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Discrete Boltzmann equation model for nonideal gases
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A discrete model based on the Boltzmann equation with a body force and a single relaxation time collision
model is derived for simulations of nonideal-gas flow. The interparticle interaction is treated using a mean-field
approximation. The Boltzmann equation is discretized in a way that preserves the derivation of the hydrody-
namic equations from the Boltzmann equation, using either the Chapman-Enskog method or the Grad 13-
moment method. The previously proposed nonideal-gas lattice Boltzmann equation model can be analyzed
with rigor. @S1063-651X~98!50401-1#

PACS number~s!: 47.55.Kf, 02.70.2c, 05.70.Ln, 51.20.1d
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Computer simulations of fluid dynamical problems i
volving fluid interfaces and phase transitions are of both f
damental and practical importance. Traditional compu
tional fluid dynamics ~CFD! methods for solving
macroscopic hydrodynamic equations have many difficul
in this area. For instance, fluid interfaces often undergo
pological change due to both coalescence and phase tr
tions. In problems where the capillary effect is importa
high resolution is required for accurate computation of int
face curvature. The treatment of these problems usin
Navier-Stokes solver is cumbersome, if not impossible,
many situations. The macroscopic motion of a fluid can a
be solved by computing motions of its constituent particl
Since the complexity of the nonideal-gas fluid systems
essentially due to the microscopic interparticle interacti
particle methods such as molecular dynamics can simu
complex fluid phenomena naturally by implementing the c
rect interparticle potential. However, these methods are v
inefficient for fluid simulations.

At the mesoscopic level, the lattice-Boltzmann-equat
~LBE! method simulates the motion of fluids by followin
the evolution of a lattice Boltzmann equation that gove
the behavior of the single-particle distribution function.
was found that solving the LBE directly is an efficient a
accurate method for simulating fluid motion@1#. More im-
portantly, the interparticle interaction can be easily incorp
rated into the LBE method to form a model that can simul
macroscopic complex fluid phenomena at least as efficie
as the conventional CFD methods solve the hydrodyna
equations for simple fluids@2#.

Although the LBE method has shown its ability to sim
late complex fluids, a recent study@3# shows that this method
can be greatly improved if one can establish the relations
between the LBE and the continuous Boltzmann equa
@3#. Historically, the continuous Boltzmann equation h
mainly been used to solve supersonic flows@4#. This is par-
tially due to both the extreme complexity of the collisio
kernel when dealing with dense, interacting particles and
tremendous computer resources required to resolve the
dimensional distribution function. In this paper, we propo
a computational scheme for the simulation of nonideal ga
based on the continuous Boltzmann equation using a sin
571063-651X/98/57~1!/13~4!/$15.00
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relaxation-time approximation, also known as the Bhatnag
Gross-Krook~BGK! collision model @5#. The interparticle
attraction is treated using a mean-field approximation in
same way that the Coulomb interaction among the char
particles of a plasma is treated in the Vlasov equation@5#.
Following the work of Enskog, the effect of the exclusio
volume is taken into account by an additional term in t
collision operator. The final Boltzmann equation is then d
cretized in the velocity space in a way that guarantees
the Navier-Stokes equation is obtained at the macrosc
level. This discretization is similar to the truncation made
the well-known 13-moment method of Grad@6#. The previ-
ously proposed nonideal LBE model@2# can be obtained
with only minor differences. The present derivation allow
the LBE model to be implemented on nonuniform grids. T
‘‘interaction potential’’ introduced previously now has
clear connection with the interparticle pairwise potential
real fluids. Analysis of some other schemes@7,8# for incor-
porating interparticle forces into LBE models in the fram
work of the present derivation shows that anisotropy is
consequence of an inappropriate intermolecular interacti

We start from the following Boltzmann equation in whic
the collision term is replaced by the BGK collision model

] f

]t
1j•¹ f 1F•¹j f 52

f 2 f eq

l
, ~1!

where f [ f (x,j,t) is the single-particle distribution function
in the phase space (x,j), j is the microscopic velocity,F is
an external body force which can depend on both space
time, l is the relaxation time due to collision, andf eq is the
Maxwell-Boltzmann distribution function:

f eq[
r

~2pRT!D/2
expF2

~j2u!2

2RT G , ~2!

with R and D being the gas constant and dimension of t
space, respectively. The macroscopic densityr, velocity u,
and temperatureT are calculated as the moments of the d
tribution function:
R13 © 1998 The American Physical Society
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r5E f dj, ~3!

ru5E jf dj, ~4!

D

2
rRT5E ~j2u!2f dj. ~5!

These macroscopic fluid variables can be shown to obey
familiar Navier-Stokes equations.

The derivative¹j f cannot be calculated directly becau
the dependence of the distribution function on the mic
scopic velocity is unknown. Considering thatf eq is the lead-
ing part of the distributionf and the gradient off eq has the
most important contribution to the gradient off , we assume

¹j f '¹j f eq52
j2u

RT
f eq. ~6!

Consequently, we obtain

] f

]t
1j•¹ f 52

f 2 f eq

l
1

F•~j2u!

RT
f eq. ~7!

In the simplified Boltzmann equation above,F is the ex-
ternal force experienced by each particle. In this paper,
will use the same term to account for the particle interacti
similarly to the Vlasov approximation in which each partic
experiences an averaged electric field arising from the C
lomb interaction from the other particles@5#. To simulate a
nonideal gas, two important factors have to be taken i
consideration: the intermolecular attraction and the exclus
volume of molecules.

The intermolecular attraction is treated using the sa
mean-field approximation, i.e., a particle can be conside
to move in the following averaged force potential due
intermolecular attraction@9#:

V~r1!5E
r 12.s

uattr~r 12!r~r2!dr2 , ~8!

where,r 125ur12r2u, uattr(r 12) is the attractive component o
the intermolecular pairwise potential, ands is the diameter
of the molecules. Expandingr(r2) in Eq. ~8! about r1 and
assuming that the gradient ofr is small, the leading two
terms are

V522ar2k¹2r, ~9!

wherea andk are constants given by

a52
1

2Er .s
uattr~r !dr ,

k52
1

6Er .s
r 2uattr~r !dr .

According to the analysis of Enskog~c.f. Chap. 16 of Ref.
@10#!, when the temperature is a constant, the effects of
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exclusion volume of the molecules on the equilibrium pro
erties of a dense gas can be approximated by the follow
addition to the collision term:

2 f eqbrx~j2u!•¹ ln~r2x!, ~10!

whereb52ps3/3m, m is the mass of a single molecule, an
x is the increase in collision probability due to the increa
in fluid density, which has the following asymptotic form:

x511
5

8
br10.2869~br!210.1103~br!31••• . ~11!

The form of Eq. ~10! allows it to be combined with the
corrections due to intermolecular attraction, yielding a sin
equivalent force field in Eq.~7!:

F52¹V2brRTx¹ ln~r2x!. ~12!

It should be noted that in the derivation above a few cru
approximations have been employed. The corresponde
with the details of the molecular properties should only
taken as heuristic when the equations above are applie
real systems to obtain quantitative results.

To solve Eq.~7! numerically, we first discretized it in
time. The equation can be integrated over a time step ofdt to
become

f ~x1jdt,j,t1dt !2 f ~x,j,t !

52E
t

t1dt f 2 f eq

l
dt1E

t

t1dt F•~j2u!

RT
f eqdt. ~13!

Following previous lattice Boltzmann models for an ide
gas, the integrand of the first term on the right-hand side
Eq. ~13! is assumed to be constant over one time step. T
assumption yields an artificial viscosity that can be absor
into the real viscosity of fluids. However, a trapezoidal ru
is necessary for the second integration as discussed l
With these considerations, Eq.~13! becomes

f ~x1jdt,j,t1dt !2 f ~x,j,t !

52
f 2 f eq

t U
t

1
dt

2 FF•~j2u!

RT
f eqU t1dt

1
F•~j2u!

RT
f eqU tG , ~14!

where t5l/dt is the nondimensional relaxation time. Th
right-hand side involves quantities evaluated att1dt. To
eliminate this implicity, we introduce the following new
variable:

h5 f 2
F•~j2u!

2RT
f eqdt, ~15!

in terms of which, Eq.~14! becomes

h~x1jdt,j,t1dt !2h~x,j,t !

52
h~x,j,t !2heq~x,j,t !

t
1

F•~j2u!

RT
f eqdt, ~16!

where
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heq5F12
F•~j2u!

2RT
dt G f eq. ~17!

Here we restrict our interest to the recovery of mass
momentum equations only and will defer the discussion
the temperature equation to future publications. The ma
scopic density and momentum are now related toh by

E hdj5r, ~18!

E hjdj5ru2 1
2 rFdt. ~19!

To solve the time-discretized system given by Eqs.~16!,
~18!, and~19! numerically, the velocity space, denoted byj,
must be discretized. It is well known that the form of th
distribution in the velocity space affects the macrosco
fluid equations through its first few moments. When derivi
the Navier-Stokes equations from the the Boltzmann eq
tion with the BGK collision model using the Chapma
Enskog expansion, only velocity moments of the Maxwelli
distribution up to third order are used. Alternatively, Gr
@6# was able to obtain the hydrodynamic equations from
Boltzmann equation by expanding the distribution functi
in the velocity space in terms of Hermite polynomials, a
keeping only the first three terms in the expansion. For
function that can be represented by a finite number of H
mite polynomials, the moments, or, equivalently, the exp
sion coefficients, can beexactlycomputed by Gaussian inte
gration using the function values at a set of discrete po
@11#. Truncating the higher-order Hermite polynomials in t
functional space is equivalent to truncating the continu
velocity space into a finite set of discrete points. After th
truncation, the moment integrals in Eqs.~18! and ~19! are
replaced by summations of the function values using
Gaussian quadrature of the following form:

E c~j!h~x,j,t !dj5(
a

wac~ea!h~x,ea ,t !, ~20!

where$ea% is the set of collocation points in velocity spac
wa are the corresponding weight coefficients, andc(j) is a
polynomial in j. In order for the velocity moments to hav
the correct hydrodynamic behavior, it is sufficient to ha
only information of the distribution function at the points
the velocity space given by the Gaussian quadrature form
As long as the integration scheme is accurate for polyno
als c(j) of up to third order, the summation in velocit
space yields the correct moments, and the derivation of
Navier-Stokes equation from the Boltzmann equation s
vives the discretization of the velocity space. For more
tails, readers are referred to@3#. Here we only focus on the
two-dimensional, isothermal, low-Mach-number flow,~i.e.,
T5const andu2!RT). Under these assumptions, thef eq can
be expanded as

f eq5
r

2pRT
expS 2

j2

2RTD
3F11

j•u

RT
1

~j•u!2

2~RT!2
2

u2

2RTG1O~u3!. ~21!
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With exp(2j2/2RT) being the weight function, the integra
tion scheme has to be a Gauss-Hermite quadrature of at
fifth order. On a hexagonal lattice, for example, it has be
shown@3# that these restrictions yield the following colloca
tion points:

ea5H 0 a50,

cS cos
a21

3
p,sin

a21

3
p D a51,...,6,

~22!

wherec52ART, and the corresponding weight coefficien
of w05pRT, andwa5pe2RT/6 for a51,...,6. By introduc-
ing

ha5wah~x,ea ,t !, ~23!

and the similar definitions forf a and f a
eq, Eq. ~16! can be

written as

ha~x1eadt,t1dt !2ha~x,t !

52
1

t
@ha~x,t !2ha

eq#14
F•~ea2u!

c2
f a

eqdt, ~24!

where,

f a
eq5tarF1

2
12

ea•u

c2
1

4~ea•u!2

c4
2

u2

c2G , ~25!

with t051 and ta51/6 for a51,...,6. The corresponding
equilibrium distribution forh can be calculated using

ha
eq5F122

F•~ea2u!

c2
dtG f a

eq, ~26!

and the macroscopic density and velocity given by Eqs.~18!
become

( ha5r, ~27!

( haea5ru2 1
2 rFdt. ~28!

The discretized equations have the same form as LBE m
els if the spacex is discretized so thateadt is the distance
between two neighboring grid points.

It is interesting at this point to use our results to analy
the previous lattice Boltzmann models with interparticle
teractions. A direct comparison can be made with the non
cal model proposed by Shan and Chen@2#. By realizing that
the distribution function in Refs.@2# corresponds to the func
tion h in the present model, and replacingF with rFdt, the
previous model is equivalent to the present model except
a minor difference on the right-hand side of the evoluti
equation. This difference, which can be written as

warH tS t2
1

2D 2FF2

c2
2

4~ea•F!2

c4 G1S 12
1

2t D
3F8~F•u!~ea•u!

c4
2

4F•~ea2u!u2

c4

1
16F•~ea2u!~ea•u!2

c6 G J , ~29!
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is of second order inu2/c2 andF2/c2. As long as the velocity
and interparticle force are small, this difference is negligib

Attention needs to be drawn here to the choice ofF. Pre-
viously @2#, it was defined as

F52Gc~x!(
a

c~x1ead t!ea , ~30!

wherec is the ‘‘effective mass’’ which is a function of den
sity. By expandingc(x1ea) aboutx, we have

F52¹S 3Gc2d tc
2

2 D2
3Gc4d t

3

8
c¹¹2c, ~31!

whereas in the present results, from Eq.~12!, we have

rFd t5¹~ar22br2RTx!d t1krd t¹¹2r. ~32!

By matching the first-order derivative term of Eqs.~31! and
~32!, the following relation between the previously unspe
fied ‘‘effective mass’’ and the molecular properties can
identified:

c5
r

cS 2bRTx22a

3G D 1/2

. ~33!

Another class of LBE models@7,8,12# implements mo-
mentum conservation at each collision. Since only local
formation is used at each collision, the integrand of the s
ond term in Eq.~13! must be treated as a constant during o
time step if these models are to be derived with the pres
method. This leads to the following evolution equation off :

f a~x1eadt,t1dt !2 f a~x,t !

52
1

t
@ f a~x,t !2 f a

eq#14
F•~ea2u!

c2
f a

eqdt. ~34!

It can be shown that the local-interaction-based LBE mod
can be obtained from Eq.~34! if the fluid velocity u is ne-
glected in the second term on the right-hand side of Eq.~34!.
In the model proposed by Gunstensenet al. @7# and Grunau,
Chen, and Eggert@12#, the difference between two compo
nents@13# satisfies an evolution equation similar to Eq.~34!
but with the second interaction term on the right-hand s
replaced by
. A
-

.

tt
.

-

-
c-
e
nt

ls

e

A

2u¹ru
ea•P•ea , ~35!

whereP5¹r¹r21
2u¹ruI is the stress tensor due to interpa

ticle interaction andr is the difference of the densities of th
two components~the so-called color field!. Similar results
have been found for the model proposed by Swift, Osbo
and Yeomans@8#. By regrouping the equilibrium distribu
tions in @8#, the interaction term can be identified a

ea•P•ea , with P5 2
3 k(¹r¹r2 1

2 u¹ruI ).
The neglect of the velocity in the second collision term

this class of models is not a coincidence because the in
action in these models was constructed based on equilibr
information only. The consequence, however, leads to
following two unsatisfactory results. First, after neglecti
the velocity dependence, the interparticle force, which can
found as proportional toea•P, has a dependence on the la
tice structure, which we believe is responsible for the ani
tropic features in these models. Second, the interaction t
in Eq. ~34! does not depend on fluid velocity. Microscop
cally, the velocity distribution in the laboratory referenc
frame, instead of that in the reference frame moving with
fluid, was used in computing the interaction term. This mig
result in the lack of Galilean invariance in these models. T
shortcomings of the local-interaction-based models h
been shown in a recent numerical study@14#.

In summary, we have proposed a discrete model for co
puter simulation of nonideal gases based on the Boltzm
equation with the BGK collision model. A mean-field ap
proximation is used for the interparticle interaction. The d
cretization of the velocity space ensures that the Nav
Stokes equation can be obtained at a macroscopic level.
discretization effectively provides a numerical scheme
the solution of the Grad 13-moment system. A previou
proposed LBE model is found to be consistent with t
present analysis. It is also found that anisotropy might
inevitable in this type of model if a nonlocal interaction
not included in momentum space.

The authors thank Dr. S. Hou, Dr. L. Wang, and Dr.
Zou for helpful discussions.
v.

try

f
,

@1# G. R. McNamara and G. Zanetti, Phys. Rev. Lett.61, 2332
~1988!; H. Chen, S. Chen, and W. H. Matthaeus, Phys. Rev
45, R5339~1992!; Y. H. Qian, D. d’Humieres, and P. Lalle
mand, Europhys. Lett.17, 479 ~1992!.

@2# X. Shan and H. Chen, Phys. Rev. E47, 1815~1993!; X. Shan
and H. Chen,ibid. 49, 2941~1994!; X. Shan and G. Doolen, J
Stat. Phys.81, 379 ~1995!.

@3# X. He and L. Luo, Phys. Rev. E55, R6333~1997!.
@4# K. Xu and K. Prendergast, J. Comput. Phys.147, 17 ~1994!.
@5# P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev.94,

511 ~1954!.
@6# H. Grad, Commun. Pure Appl. Math.2, 331 ~1949!.
@7# A. K. Gunstensen, D. H. Rothman, S. Zeleski, and G. Zane

Phys. Rev. A43, 4320~1991!.

i,

@8# M. R. Swift, W. R. Osborn, and J. M. Yeomans, Phys. Re
Lett. 75, 830 ~1995!.

@9# J. S. Rowlinson and B. Widom,Molecular Theory of Capillar-
ity, The International Series of Monographs on Chemis
~Clarendon Press, Oxford, 1982!.

@10# S. Chapman and T. G. Cowling,The Mathematical Theory o
Non-Uniform Gases, 3rd ed. ~Cambridge University Press
London, 1970!.

@11# K. E. Atkinson, An Introduction to Numerical Analysis, 2nd
ed. ~John Wiley & Sons, New York, 1988!.

@12# D. Grunau, S. Chen, and K. Eggert, Phys. Fluids A5, 2557
~1993!.

@13# E. G. Flekko”y, Phys. Rev. E47, 4247~1993!.
@14# S. Houet al., J. Comput. Phys.~to be published!.


